Learn R Programming

ComRiskModel (version 0.2.0)

CExpBio distribution: Complementary exponential binomial distribution

Description

Evaluates the PDF, CDF, QF, random numbers and MLEs based on the complementary exponential binomial (CExpBio) distribution. The CDF of the complementary G binomial distribution is as follows: $$ F(x)=\frac{\left[1-\lambda(1-G(x))\right]^{m}-(1-\lambda)^{m}}{1-(1-\lambda)^{m}};\qquad\lambda\in\left(0,1\right),\,m\geq1, $$ where G(x) represents the baseline exponential CDF, it is given by $$ G(x)=1-\exp(-\alpha x);\qquad\alpha>0. $$ By setting G(x) in the above Equation, yields the CDF of the CExpBio distribution.

Usage

dCExpBio(x, alpha, m, lambda, log = FALSE)
pCExpBio(x, alpha, m, lambda, log.p = FALSE, lower.tail = TRUE)
qCExpBio(p, alpha, m, lambda, log.p = FALSE, lower.tail = TRUE)
rCExpBio(n, alpha, m, lambda)
mCExpBio(x, alpha, m, lambda, method="B")

Value

dCExpBio gives the (log) probability function. pCExpBio gives the (log) distribution function. qCExpBio gives the quantile function. rCExpBio generates random values.

Arguments

x

A vector of (non-negative integer) values.

p

A vector of probablities.

n

The number of random values to be generated under the CExpBio distribution.

lambda

The strictly positive parameter of the binomial distribution \(\lambda \in (0,1)\).

m

The positive parameter of the binomial distribution \(m \geq 1\).

alpha

The strictly positive scale parameter of the baseline exponential distribution (\(\alpha > 0\)).

lower.tail

if FALSE then 1-F(x) are returned and quantiles are computed 1-p.

log

if TRUE, probabilities p are given as log(p).

log.p

if TRUE, probabilities p are given for exp(p).

method

the procedure for optimizing the log-likelihood function after setting the intial values of the parameters and data values for which the CExpBio distribution is fitted. It could be "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", or "SANN". "BFGS" is set as the default.

Author

Muhammad Imran and M.H Tahir.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H Tahir mht@iub.edu.pk.

Details

These functions allow for the evaluation of the PDF, CDF, QF, random numbers and MLEs of the unknown parameters with the standard error (SE) of the estimates of the CExpBio distribution. Additionally, it offers goodness-of-fit statistics such as the AIC, BIC, -2L, A test, W test, Kolmogorov-Smirnov test, P-value, and convergence status.

References

Tahir, M. H., & Cordeiro, G. M. (2016). Compounding of distributions: a survey and new generalized classes. Journal of Statistical Distributions and Applications, 3, 1-35.

See Also

pCExpGeo

Examples

Run this code
x<-data_guineapigs
rCExpBio(20,2,2,0.5)
dCExpBio(x,2,2,0.5)
pCExpBio(x,2,3,0.5)
qCExpBio(0.7, 2,3,0.5)
mCExpBio(x,1.402,2.52,0.04, method="B")

Run the code above in your browser using DataLab